会议报道
9月28日,中国神经科学学会第十八届全国学术会议(CNS 2025)期间,由天桥脑科学研究院(中国)与中国神经科学学会联合主办的“BCI&AI脑机接口创新技术碧海论坛”成功举行。

今年是天桥脑科学研究院自2018年连续第8次支持CNS全国学术会议。作为由CNS评选的特色主题论坛,碧海论坛成功吸引了近400位专家学者亲临现场。钛媒体等主流科技媒体对论坛进行了直播,观看人次高达30万。
本次论坛聚焦脑机接口与人工智能的交叉领域,深度探讨了面向健康人群的脑机增强、脑机接口创新技术及类脑智能三大前沿版块。与会专家不仅分享了对脑机接口未来发展路径的前瞻思考,更提出了在人工智能辅助下的脑机接口新范式。
一、意念对话不是梦,BCI赋能健康人群实现里程碑进展

▷ 致辞/演讲嘉宾 陶虎,讲题《脑机接口-让大脑连接未来》。陶虎,脑虎科技创始人兼首席科学家。国家“万人计划”科技创新领军人才入选者、国家基金委优秀青年基金获得者、国家海外高层次人才引进计划青年项目入选者,享受国务院政府特殊津贴。中国神经科学学会脑机接口与交互分会创始主委、中国科协脑机接口产业技术路线图负责人。
天桥脑科学研究院研究员、脑虎科技(NeuroXess)创始人兼首席科学家陶虎分享了两项具有里程碑意义的最新研究成果。
由脑虎科技自主研发的256通道超高密度柔性脑机接口系统取得了突破性进展。该系统在灵长类动物实验中实现了100%的运动意图识别准确率。在人体应用方面,经过短短一周的训练后,该系统的信息传输速率便达到了每秒4.15比特。
更引人注目的是,该技术实现了静默中文解码,超人类语速交流(突破307字/分钟,超过正常人2倍)、意念办公、双脑互联远程实时意念对话等颠覆性应用。
这些成果与国际顶尖水平相比毫不逊色。例如,马斯克的Neuralink受试者在训练一周后实现了4.60 bps的运动控制水平,而美国加州大学旧金山分校(UCSF)Edward Chang团队的解码能力为每分钟78个英语单词。脑虎科技的成果与这些国际领先水平相当甚至更优,有力地证明了中国脑机接口技术的全球领先实力。
陶虎表示,脑虎科技正致力于拓展应用场景、提升系统稳定性并降低使用成本,来加速推进相关技术的商业化应用。
二、类脑计算:定制化大模型,开启智能交互新范式

▷ 演讲嘉宾 李国齐,讲题《类脑大模型及其在脑机接口的前景》。李国齐,中国科学院自动化所研究员,脑认知与类脑智能全国重点实验室副主任,通用类脑智能大模型北京市重点实验室主任,国家杰出青年基金获得者;在Nature、Nature子刊、Science子刊等期刊和AI顶会上发表论文200余篇,论文被引用1.8万余次;主持国家自然科学基金重点项目、联合重点项目、科技部重点研发项目等30余项;担任IEEE TNNLS,IEEE TCDS和清华大学学报-自然科学版编委;曾获得中国自动化学会自然科学一等奖,ECCV最佳论文奖提名,中国算力大会最佳论文奖,曾入选北京市杰青,中国科学院百人计划,DeepTech中国智能计算科技创新人物,中国算力青年先锋人物。
中国科学院自动化所李国齐研究员认为,专门面向脑机接口优化的定制化大模型,比通用大模型更适合这一领域的发展需求。为此,他的团队开发了SpikingBrain系统,采用树突神经元作为基本计算单元,能够高效处理事件驱动和时间稀疏的脑电信号,从而在提升信号编解码性能的同时,显著降低系统功耗。
这一突破性进展,源于李国齐团队在类脑计算领域的系统性创新。他们提出的大规模脉冲神经网络计算理论,成功将脉冲神经网络(SNN)与主流人工神经网络(ANN)的性能差距从20年缩短至1年。此外,他们开发的MetaLA统一框架在性能上已超越Mamba架构。
这些前沿成果,配合低功耗类脑芯片和全栈式训练平台,为脑机接口技术开辟了新路径,展现出类脑计算与大模型融合的巨大潜力。未来,这项技术有望实现更精准的信号处理和更自然、高效的人机交互。
三、纳米智能:探索脑机交互的“微观”路径

▷ 演讲嘉宾 贺强,讲题《纳米机器人与BCI:探索人脑与机器的微观连接》。贺强,哈尔滨工业大学教授,于2003年在中国科学院化学研究所获得博士学位。他提出了胶体马达、超分子胶体马达和游动纳米机器人的概念。是首位利用可控化学组装技术构建集自推进和智能药物递送于一体的超分子胶体马达的学者。基于此,他开发了多种可注射的游动纳米机器人,并将其应用于重大疾病的精准治疗。已发表200多篇同行评议论文,并拥有24项专利。目前,他担任中国化学会胶体与界面化学专业委员会成员,以及Small,ChemNanoMat和Colloid and Surface A的编委。
传统脑机接口主要依赖植入电极,而哈尔滨工业大学贺强教授另辟蹊径:将纳米机器人集群作为一种全新的脑机交互范式。这种“自下而上”的方法,通过纳米机器人的自组织行为,实现从个体到集群、从微观到宏观的信息传递与功能调控。
作为国际上首个成功研发自推进、一体化超分子胶体的团队,贺强教授将化学动力学与纳米技术相结合,开发出一种突破性的智能纳米系统。通过可控化学组装技术,这些纳米机器人不仅能主动穿越血脑屏障,还能响应光、磁场等外部刺激实现集群协同。与传统电极植入相比,这种柔性的微观调控方式大大降低了创伤风险,为脑疾病的精准治疗和脑机交互开辟了全新途径,展现了智能纳米系统在未来医疗领域的变革性潜力。
四、聚焦超声波:实现大脑深部的无创精准调控

▷ 演讲嘉宾 Jan Kubanek,讲题《聚焦超声神经调控和脑机接口》。Jan Kubanek,生物医学工程师和神经工程师,华盛顿大学生物医学工程/神经科学博士,他曾在斯坦福大学进行博士后深造,目前是犹他大学的助理教授。他的实验室开发了一种能够对人类大脑深部回路进行精确、可控调节的设备。已发表的研究表明,该设备可调节慢性疼痛、抑郁症和特发性震颤的症状。该方法目前正用于关键的临床试验。
来自犹他大学的Jan Kubanek介绍了由其团队开创的一种突破性的超声波脑机交互技术。不同于传统侵入式电极,这项技术利用超声波能穿透颅骨的特性,通过微秒级的精确聚焦,实现了对基底节和丘脑等大脑深部结构的非侵入性调控,创新性地解决了超声波在颅骨传导时的衰减问题,确保了治疗剂量的精准递送。
临床研究显示,这项技术能有效治疗特发性震颤、重度抑郁症和慢性疼痛,并能诱导持久的神经可塑性改变。特别是在慢性疼痛治疗中,仅需40分钟的扣带回刺激就能显著改善疼痛强度。目前,这一突破性技术已进入多中心临床试验阶段。更令人振奋的是,高频超声波技术已实现单细胞级别的精确调控,预示着人类与环境、人与人之间可能出现全新的认知互动方式。
五、智能双向进化:人机共生,重塑未来

▷ 演讲嘉宾 张越一,讲题《类脑计算驱动的脑机接口》。张越一,集智进化(MiroMind)AI研究员。已发表期刊会议论文100余篇(包括CCF-A类会议文章或IEEE汇刊文章50余篇),申请/授权中国发明专利20余项。曾主持国家自然科学基金青年项目、面上项目,参与科技部科技创新 2030项目。现任中国图形图像学会多媒体专委会副秘书长,参与组织过中国多媒体大会(ChinaMM)等活动。所指导的学生中多人次获得中国科学技术大学研究生国家奖学金和专项奖学金。目前的研究方向为:脑启发多模态大模型与智能体。
MiroMind AI研究员张越一提出,要让人类智能与人工智能相互启发、共同进化。
他指出,从最初的感知机到如今丰富的人工神经网络,神经科学的发展为计算领域带来了革命性突破。通过模仿大脑架构,我们创造出了此前无法实现的计算解决方案。
更重要的是,这种影响是双向的。深度学习不仅从大脑获得灵感,反过来也帮助我们更好地理解大脑的工作机制。通过优化人工神经网络,观察其中行之有效的模式,我们得以重新审视神经连接,深入了解大脑的组织方式。这种双向互动正在开启认知科学的新篇章。
正如天桥脑科学研究院与MiroMind创始人陈天桥先生所言:
人类不仅是AI的创造者,也是其演化路径的决定者。AI与人类共同组成生态系统,互动中形成反馈循环,重塑个体认知与社会结构。未来,最终具有自我意识的人工智能,是在镜像人类智能长期记忆之后实现人类智能和人工智能的共同进化。
本次碧海论坛不仅是一场前沿技术的集中展演,更是一次对未来的深刻展望。从超高密度柔性接口到定制化大模型,从纳米机器人到无创超声波,我们正在从不同维度推动脑机接口技术的边界。这些技术突破正在加速人机共生时代的到来,共同描绘出一幅人类智能与人工智能深度融合、共同进化的宏伟蓝图。
30
2025-09

今天,天桥脑科学研究院(Tianqiao and Chrissy Chen Institute, The Chen Institute)与美国科学促进会(American Association for the Advancement of Science, AAAS)宣布,共同发起 2026 年“AI 驱动科学大奖”,旨在表彰全球范围内用人工智能技术(如机器学习、深度学习、强化学习等)在自然科学(包括生命科学和物质科学)研究领域解决关键问题、推动科学研究加速发展的青年科学家。
首届获奖者名单已于今年 7 月正式揭晓。三位获奖者——Zhuoran Qiao 博士、Aditya Nair 博士与 Alizée Roobaert 博士,凭借运用人工智能技术在生物化学、神经科学和海洋科学领域的突破性成果脱颖而出。三位获奖者将分享总额 5 万美元的现金奖励。此外,他们的获奖论文已同步发表于《科学》杂志[1-3],标志着相关成果获得学界高度认可。
申报对象
本奖项面向与人工智能相关领域的青年科学家开放。申报者须在申报时已取得 M.D.、Ph.D.或 M.D./Ph.D.学位,并且获学位时间不超过十年。这是新兴的学术领袖向全球展示工作成果,并在人工智能领域获得广泛认可的绝佳机会。
如何申报
申请者需提交一篇 1000 字的研究论文,描述他们最重要的研究发现,主题必须是利用人工智能相关技术,在其它科研领域做出了根本性的突破,而这些突破在未使用人工智能技术前是难以实现的。
申报通道
可访问天桥脑科学研究院官网:https://www.cheninstitute.org/prize
或直接登录《科学》杂志申报页面:https://www.science.org/content/page/chen-institute-science-prize-ai-accelerated-research
有关申报截止日期及更多详情,请参见申报页面。
展示机会
获奖者将受邀在“天桥脑科学研究院 AI 驱动科学研讨会”(Chen Institute Symposium for AI Accelerated Science, AIAS)及“天桥脑科学研究院 AI 驱动科学青年论坛”(Chen Institute Youth Forum for AI Accelerated Science)发表主旨演讲,参与高端圆桌讨论,并主持互动工作坊。获奖者及入围者还将被授予 “陈氏学者”称号。
了解更多会议信息,请访问:https://aias2025.org/
加入社区
欢迎加入我们的 AI 驱动科学社区成为 AIAS 会员,以获得更多的权益。申请邮箱:AItalents@cheninstitute.org
2024 年 AI 驱动科学大奖获奖论文:
[1] Zhuoran Qiao , AI to rewire life’s interactome: Structural foundation models help to elucidate and reprogram molecular biology.Science389,244-245(2025).DOI:10.1126/science.adx7802 [2] Aditya Nair , Unraveling the emergent chorus of the mind: Machine learning reveals how a hidden neural code orchestrates diverse emotion states.Science389,245-245(2025).DOI:10.1126/science.adx7811 [3] Alizée Roobaert , Mapping the global coastal ocean with AI: Artificial neural networks can help better constrain the global carbon cycle in shallow seas.Science389,245-245(2025).DOI:10.1126/science.adx782605
2025-08

Dr. Aditya Nair
加州理工学院和斯坦福大学博士后研究员及 NIH NeuroAI 项目青年学者
当你体验饥饿、愤怒或恐惧等情绪时,大脑中的特定神经回路会被激活。但如果观察这些回路中的单个细胞,往往会发现这些细胞的活动与人的情绪体验之间几乎没有明显的相关性。
“这是一个巨大的悖论:我们从动物实验中知道这些回路控制情绪,因为如果我们让这些回路失活,动物就会停止表现出情感行为。”天桥脑科学研究院与《科学》杂志 AI 驱动科学大奖优胜奖得主 Aditya Nair 这样说道,“但当我们记录单个神经元的活动时,却找不到与目标行为的直接联系。”
为了解开这个谜团,Nair 将与情绪(如攻击性)相关的下丘脑区域的神经活动数据输入到一个能够检测神经元间微妙互动模式的机器学习模型中。“这就像在听一场交响乐:如果你只听某一件乐器,什么都听不出来,”他解释道,“你需要听整个乐队,才能理解旋律。”
Nair 使用的算法揭示了这样一种现象:当神经元群体交换并循环信号时,它们会稳定在一种被称为“线吸引子”(line attractor)的复杂关系中。这是一种常见于数字神经网络、但在活体大脑中极少被观察到的机制,它允许连续变量随时间被存储。“这很重要,因为情绪有两个关键特性:强度会变化,而且会持续一段时间。”Nair 说,“通过将 AI 模型拟合到神经活动上,我们在大脑中发现了一种此前无法检测到的信号,同时具备这两种特性。”
这是一个具有重要潜在意义的突破,尤其对药物研发有深远影响。“动物无法自我报告情绪,只能通过有限的几种行为表现情感,”Nair 解释道。“现在,我们可以利用大脑活动来量化受试者的饥饿、愤怒或恐惧程度——这将极大提升精神疾病治疗的开发和测试效率。”
Nair 的方法未来还可能帮助神经科学家从更广泛的大脑活动模式中检测到涌现信号。“目前我们只研究了下丘脑的一个很小的区域,”Nair 说,“但我们正在开发工具包,用于建模更大脑区的活动,并读取当成千上万神经元同时进行多项计算时涌现的隐藏信号。”
为加速这一过程,Nair 开发了一个能够接收大脑活动数据并快速处理以揭示涌现信号的大型语言模型。目标是:让标准化分析能够被快速实施,即使研究者本身对 AI 不甚精通也能轻松上手。“我们正在让 AI 工具对整个科研社区变得更加易用,以加速研究和药物开发的进程。”Nair 表示。
18
2025-07

Dr. Alizée Roobaert
比利时佛兰德海洋研究所(Vlaams Instituut voor de Zee)研究员
全球海洋每年吸收了大约四分之一的人类二氧化碳排放量——但虽然这一过程在公海得到了充分研究,沿海水域的贡献却出人意料地知之甚少。“这实在是太复杂了——有河流入海、与陆地的相互作用、水深各异等诸多因素,”天桥脑科学研究院与《科学》杂志 AI 驱动科学大奖优胜奖得主、佛兰德海洋研究所(VLIZ)“海洋气候变化的过去、现在与未来”课题组的研究员 Alizée Roobaert 表示,“虽然有一些局部研究,但全球沿海海洋到底吸收了多少二氧化碳,以及这种吸收如何随时间变化,依然存在很大不确定性。”
为了解决这个问题,Roobaert 与布鲁塞尔自由大学(Université Libre de Bruxelles)的 BGeoSys 团队合作,将全球沿海水域划分为边长 0.25 度的网格单元——在赤道附近每格约 28 公里。随后,Roobaert 叠加了全球数据(主要来自卫星遥感),涵盖海表温度、盐度、叶绿素 a 浓度等变量,并整合了约 1800 万个来自船只或浮标的沿海观测数据,包括不断变化的海表二氧化碳浓度测量。最终形成了一张覆盖全球海洋的高分辨率数据拼图,但二氧化碳测量值仅在部分网格中有数据。
接下来,Roobaert 利用机器学习揭示变量间的复杂关系,并逐步补全空白区域。“一旦算法理解了这些变量如何相互作用,它就能重构缺失的二氧化碳测量值。”Roobaert 解释道。最终,她得到了全球沿海二氧化碳吸收随时间变化的地图,其准确率约为以往的 10 倍,细节也显著提升。“这是目前基于观测、用于估算全球沿海水域二氧化碳吸收贡献的最先进方法,”Roobaert 表示。
除了加深我们对沿海水域在海洋碳循环中作用的理解,Roobaert 的高分辨率地图还能为特定区域的海气碳交换提供更准确的洞见。“对于‘蓝色经济’来说,这类数据至关重要——只有了解沿海水域如何影响碳循环,才能量化人类活动的影响,”Roobaert 说。
目前,Roobaert 和 VLIZ 团队正致力于进一步完善这一方案。当前的重点之一是为欧洲北海绘制分辨率高达 1 公里的二氧化碳分布更精细地图。其他目标还包括叠加海洋深度数据,制作四维地图,详细展示碳在水体柱中随时间的扩散过程。“真正驱动我的是,知道自己的工作正在弥补关键数据空白,帮助人们更好地理解海洋在全球碳循环中的作用,”Roobaert 表示,“我们正在用 AI 实现真正的全球影响,这也是我不断前行的动力。”
18
2025-07

Dr. Zhuoran Qiao
机器学习科学家
旧金山 Chai Discovery 公司创始科学家
有时候,即便是获奖科学家也会在实验室里栽跟头。
在北京大学读本科时,Zhuoran Qiao 梦想着专攻全合成,利用复杂的实验室方法合成有机化合物。但他很快被现实“叫醒”了。“这就像做饭不好吃一样——我在实验操作上真的不太在行。”Zhuoran Qiao 笑着说,“我总是把实验搞砸,还把自己弄伤。”几次烫伤手指和实验失败后,Zhuoran Qiao 决定转向其他方向。“结果发现,我在用计算机模拟化学反应方面还挺有天赋,”他说,“在计算机上‘做实验’对我来说顺利多了。”
这其实还是谦虚了。今年春天,Zhuoran Qiao 凭借利用生成式 AI 模拟蛋白质结构的研究,成为首届“天桥脑科学研究院与《科学》杂志 AI 驱动科学大奖”的得主。他的突破性成果有望彻底改变制药领域。
“Zhuoran Qiao 的工作令人震撼地展示了 AI 加速科学发现的力量——多亏了他的努力,过去需要耗费数月甚至数年繁重劳动的研究,现在几秒钟就能完成,”天桥脑科学研究院创始人雒芊芊表示,“他让研究人员能够快速设计新分子,为那些曾被认为‘无药可治’的疾病带来了全新的治疗路径。”
科学发现之路
在中国学习计算化学后,Zhuoran Qiao 于 2018 年前往加州理工学院,在 Anima Anandkumar 教授和化学与 AI 创新者 Thomas Miller 教授的实验室攻读博士学位。在那里,Zhuoran Qiao 开始利用机器学习,打通量子数据与分子结构高层描述之间的桥梁。“用 AI,我们能获得以往需要极高计算量才能得到的结构洞见,”Zhuoran Qiao 说。
2021 年,正值 Zhuoran Qiao 不断完善自己的模型时,谷歌 DeepMind 发布了 AlphaFold——一个能根据氨基酸序列预测复杂蛋白质结构的 AI 模型,进一步凸显了计算模拟的潜力。AlphaFold 的能力让 Zhuoran Qiao 惊叹不已:蛋白质的折叠方式比宇宙中的原子还多,但 AlphaFold 却能极其准确地快速预测蛋白质结构。“这是个了不起的突破,”Zhuoran Qiao 说,“但我也看到还有两点不足。”
首先,AlphaFold2 只研究孤立的蛋白质,而药物研发需要模拟蛋白质与小分子的相互作用。其次,AlphaFold2 给出的是静态快照,但蛋白质在体内的生化环境中始终处于动态变化之中。“要理解蛋白质的功能,就必须捕捉其全部动态过程,”Zhuoran Qiao 解释道。
就在这时,Zhuoran Qiao 灵机一动:为何不用扩散模型(diffusion model)?这类模型后来也用于流行的生成式 AI 图像工具。正如米开朗基罗雕刻大卫像时,一点点剔除多余的石头,扩散模型则是逐步消除目标之外的噪音。比如,输入“戴高帽的猫”的提示,模型会从一堆随机像素出发,结合关于猫和帽子的训练数据,逐步逼近目标图像。
Zhuoran Qiao 意识到,同样的方法可以用于模拟蛋白质的复杂动态分子景观。“你从所有可能原子位置的随机混合出发,然后逐步去噪,最终得到三维结构,”他解释道。这里不再是文本提示,而是生化数据:蛋白质序列的进化特征、小分子的化学图谱,以及预测小分子与蛋白质如何相互作用的“接触图”。“利用这些,扩散模型可以映射每一个原子,最终还原分子结构,”Zhuoran Qiao 说。
通俗来说,这意味着 Zhuoran Qiao 的预测引擎不仅能预测蛋白质如何折叠,还能预测其与其他分子(包括潜在药物)如何相互作用。
构建“计算显微镜”
在 AI 出现之前,模拟一个蛋白质是个极其庞杂的任务,要么依赖艰苦的晶体学或光谱成像,要么靠逐原子计算机模拟。“过去大家用蛮力解决这个问题,但模拟一个蛋白质要花费数年 GPU 时间,而且还要人工设置参数,”Zhuoran Qiao 解释道。而他的生成式模型只需几秒钟就能准确还原复杂分子体系。“速度提升了一百万倍,结果往往与实验数据非常接近,”他说。
实际上,这个预测引擎为研究者提供了一个“计算显微镜”,让他们无需繁琐计算和实验,就能洞悉复杂生化系统的运作。它甚至可能帮助科学家突破传统成像的极限,探索那些尚未被实验观察到的“暗蛋白”。“我们的模型可以从已知蛋白质中泛化,帮助我们跨越这一障碍,”Zhuoran Qiao 说,“这对新药开发至关重要。”
初步研究会集中在设计针对已知蛋白质的小分子。“如果你已经有关于信号通路的生物学假说,可以用我们的工具找到能触发该效果的分子,”Zhuoran Qiao 说,“这依然不是个简单问题,但我们的引擎显著加速了搜索过程。”更具雄心的是,这个引擎还能用于从零设计蛋白质,比如开发新型蛋白质传感器,甚至创建一连串生物工程蛋白质相互作用,解锁新的生物功能。有前景的应用之一,是利用“分子胶”让致病蛋白与专门降解生化物质的蛋白结合。“通过模拟这些复杂动态,我们或许能主动清除体内的致病蛋白,”Zhuoran Qiao 说,“这还只是起步阶段,但机会无限。”
最终目标不仅是加速传统研究,更是实现药物发现自动化,让研发走向人类科学家未曾设想的新方向。“我们希望构建能自动生成全新分子的工作流,”Zhuoran Qiao 说,“从长远来看,我们能够替代药物研发中大量传统的人工流程。”
走出学术圈
为了实现这个目标,Zhuoran Qiao 开始将目光投向学术之外。2023 年,他加入了 Iambic Therapeutics,这家初创公司源自他导师在加州理工的实验室;今年,他又以创始科学家的身份创立了 Chai Discovery。“学术界是原型开发的好地方,但要产生真正的现实影响,就需要更大的团队和更多资源,”Zhuoran Qiao 解释道。
团队协作带来了令人瞩目的成果:Iambic 的 NeuralPLexer 模型刷新了结构预测的行业标准,Chai 最新模型能以 16%的成功率设计新型抗体——这是此前水平的 100 倍提升。Chai Discovery 联合创始人 Joshua Meier 称之为“蛋白质的 Photoshop”,带来了强大的新见解。“数字生物学不再是科幻——它已经成为现实,”他说。
目前,DeepMind 的 AlphaFold 数据库已被超过 200 万名研究者使用,完成了以往需 10 亿年才能完成的分析;2024 年,AlphaFold 的两位创始人获得了诺贝尔化学奖。现在,Zhuoran Qiao 说,研究者们正迈入“后 AlphaFold”时代,利用更强大、更专业的模型加速发现。“我们有机会以前所未有的规模绘制蛋白质相互作用图谱,”他说,“我很幸运能参与这场变革。”
现在,Zhuoran Qiao 表示,是时候抓住这个机遇,打造能带来临床变革性成果的实用工具和工作流了。“这对我来说很有情感意义,”Zhuoran Qiao 补充道,“如果我们能做到这一点,整个计算药物研发的方式都将被彻底改变。”
18
2025-07

天桥脑科学研究院(Tianqiao and Chrissy Chen Institute)与美国科学促进会(American Association for the Advancement of Science, AAAS)今天联合宣布,首届“天桥脑科学研究院与《科学》杂志 AI 驱动科学大奖”获奖名单正式公布。这一重要年度奖项旨在表彰利用 AI 赋能科学发现的创新性研究。三位获奖者将分享总计 5 万美元的现金奖励,其获奖研究论文也将在《科学》杂志上发表。
大奖得主:
- Dr. Zhuoran Qiao,机器学习科学家,旧金山 Chai Discovery 公司创始科学家,因其在生物化学领域运用 AI 的突破性工作获得大奖。
优胜奖得主:
- Dr. Aditya Nair,加州理工学院和斯坦福大学的博士后研究员及 NIH NeuroAI 项目青年学者,他的研究专注于将 AI 和神经科学相结合。
- Dr. Alizée Roobaert,比利时佛兰德海洋研究所(Vlaams Instituut voor de Zee)研究员,开发了监测海洋气候动态的创新 AI 解决方案。
“我们收到了来自世界各地、涵盖众多科学领域的投稿申请。”天桥脑科学研究院创始人雒芊芊表示,“在 AI 正根本性地加速全球科学发现的时代,我们很高兴能够发掘这三位杰出的年轻研究者,他们正在使用强大的新技术拓展人类知识的前沿。”
“我们一如既往地对 2024 年 AI 驱动科学大奖的高质量、富有想象力的投稿感到兴奋。”《科学》杂志高级编辑 Yury V. Suleymanov 表示,“这三位早期职业科学家展示了他们在AI领域的前沿技术,他们用创新的AI方案解决了科学家在多个领域面临的重大挑战和机遇。”
获奖研究亮点
大奖:将蛋白质置于计算显微镜下
Dr. Qiao 在诺贝尔奖获奖研究基础上,运用生成式 AI 技术预测蛋白质折叠,并使用先进的机器学习技术创建动态模型,展示折叠蛋白质如何随时间变化,以及它们如何与较小分子相互作用。这一“计算显微镜”能够以惊人的速度和准确性预测蛋白质行为,为药物发现提供了强大的新工具。“我们正在以前所未有的规模解锁绘制这些分子相互作用的巨大机会,并利用这一点快速开发新药物和治疗方法。”Dr. Qiao 表示。
优胜奖:聆听大脑的隐秘合唱
目前,神经成像技术的突破使研究人员能够监测单个神经元的活动,而 Dr. Nair 正在使用 AI 揭示神经元相互作用时出现的隐秘合唱与和声。他的研究表明,这些相互作用形成持久的、自我延续的模式,可以独立于任何单个神经元的活动来编码和调节持久的心理或情感状态——如兴奋、愤怒或饥饿。他的模型还揭示了,这些持久的网络效应是由作用缓慢的神经肽(neuropeptides)介导的,这使得它们随着时间的推移更加稳定。
优胜奖:了解沿海水域如何吸收二氧化碳
世界海洋吸收了约四分之一的人为二氧化碳排放,但人们对沿海海洋在推动全球海洋碳汇方面的作用知之甚少。Dr. Roobaert 使用神经网络融合全球卫星数据和来自沿海二氧化碳测量的 1800 万个数据点,创建了第一个沿海水域二氧化碳吸收的高分辨率模型。通过将零散数据集连接起来,她的方法为世界海洋的健康状况及其在气候学中的作用提供了真正的全球性概览。
奖项设置与后续活动
大奖得主 Dr. Qiao 获得 3 万美元现金奖励,其论文会发表在今天的《科学》杂志印刷版和在线版。优胜奖得主 Dr. Nair 和 Dr. Roobaert 各获得 1 万美元现金奖励,论文将在《科学》杂志的在线版发表。所有获奖者还将获得《科学》杂志在线版五年订阅,并成为荣誉陈氏学者(Chen Scholars)。
2025 年 10 月 27-28 日,三位获奖者将在旧金山举行的首届“天桥脑科学研究院 AI 驱动科学研讨会”上展示他们的研究成果。他们还将与诺贝尔奖得主 Dr. Jennifer Doudna、Dr. David Baker,以及其他全球顶尖学者、行业领袖和研究人员同台交流。研讨会面向公众免费开放,需要注册参加。详情请访问:https://aias2025.org/

2025 年度的“AI 驱动科学大奖”申请通道将在 8 月开启,我们热情欢迎广大青年科学家们在 https://www.cheninstitute.org/prize 提前注册,以便及时收到通知。申请者应在 AI 相关的领域工作;在申请时持有医学博士、哲学博士或医学博士/哲学博士学位,并在过去 10 年内获得该学位。
同时,欢迎您加入我们的科学社区,并申请成为 AIAS 会员,以获得更多的权益。申请邮箱:AItalents@cheninstitute.org。
18
2025-07

7 月 12 日,由天桥脑科学研究院与复旦大学附属华山医院联合主办的“碧海——聚焦超声波脑机接口与神经调控学术研讨会”在上海华山医院举行。来自国内外生物物理、生物医学工程、基础医学、临床医学领域的专家学者,围绕聚焦超声技术在脑疾病治疗中的三大方向——高强度热消融、血脑屏障开放与药物递送、低强度神经调控,分享了最新研究进展与临床转化成果。
华山医院院长、国家神经疾病医学中心主任、天桥脑科学研究院(中国)院长毛颖教授指出,聚焦超声凭借无创、精准的优势,已成为国家脑科学战略布局的关键技术。

▷毛颖院长
全球聚焦超声波领域知名领军人物、多伦多大学 Kullervo Hynynen 教授回顾了该技术治疗特发性震颤、帕金森病和阿尔茨海默病的里程碑进展,并提出低成本头盔式定位等创新方向。
犹他大学 Jan Kubanek 团队开发的便携式设备 Spire,无需磁共振引导即可实现抑郁症和慢性疼痛的精准调控。上海市精神卫生中心张天宏教授介绍了超声热消融技术在强迫症等精神疾病中治疗取得的显著效果。范德堡大学 LiMin Chen 教授展示了磁共振引导聚焦超声在慢性疼痛治疗中的突破。台湾大学 Hao-Li Liu 教授介绍了自主研发的 NaviFUS 系统,在胶质瘤和癫痫治疗中显著延长患者生存期并减少发作频率。华山医院张俊海团队分享了聚焦超声热消融在子宫腺肌症等疾病中的临床应用。
,Jan-Kubanek-教授-(右).jpeg)
▷孙阶博士(左),Jan Kubanek 教授 (右)
来自中华医学会超声医学分会、北京协和医院、华山医院、上海市精神卫生中心、浙江大学医学院二院、武汉同济医院、福建医科大学一院等的知名神经、超声医学科专家参加了会议,并进行了热烈的讨论交流。会议由天桥脑科学研究院聚焦超声首席科学家孙阶博士主持。
此次将聚焦超声波作为脑机接口新的技术方向,正是盛大与天桥脑科学研究院整合国际优势资源,在这一前沿领域开辟的全新赛道。

▷与会专家与嘉宾在华山医院合影
过去 10 年,盛大和天桥脑科学研究院在脑机接口最硬核的侵入式赛道超前布局,频频出手,成果喜人。在国际上,支持加州理工学院 Richard Andersen 院士的运动解码、UCSF Edward Chang 院士的语言解码研究,取得了世界级重大突破成果。在中国,支持、孵化和投资中科院陶虎教授创办的脑虎科技,已成为中国侵入式脑机接口估值最高的企业和准独角兽,上海市认定的科创行业八大赋能者之一。
13
2025-07

6月27日,在上海市科学技术委员会、上海市浦东新区科技和经济委员会的指导下,由上海市张江科学城建设管理办公室主办,第一财经和张通社联合承办,天桥脑科学研究院(中国)、盛大天地科创产业园协办的“2025脑机接口未来产业论坛暨‘张江论剑’科创沙龙第四期脑机接口活动”在张江开幕。
本次活动以“脑机互联,智启未来”为主题,聚焦脑机接口这一极具潜力与挑战的领域,为产业界、学术界以及投资界等各方搭建起深度交流与合作的桥梁。活动邀请产业头部企业发布最新科研成果;设置了多场前沿议题的主题演讲,深度解析脑机互联的行业前景;开展产业圆桌对话,着力激发新兴技术新动能。
上海市张江科学城建设管理办公室党组成员王娴,中国科学院上海微系统与信息技术研究所研究员周志涛,中国科学院上海微系统与信息技术研究所研究员、岩思类脑研究院首席科学家李孟,景昱医疗科技(苏州)股份有限公司董事长宁益华,上海傲意信息科技有限公司创始人倪华良,BDG冬雷脑科医生集团创始人宋冬雷,数药智能科技科研负责人付航,上海小度律师事务所合伙人杜哲锋,加冕科技CEO、张通社创始人郑小辉等领导嘉宾出席了本次活动。张江科学城建设管理办公室党组成员王娴在开场致辞里指出,作为中国科技的创新高地,张江正在全力打造国内领域、国际一流的脑机接口创新策源地和产业集聚区。她强调张江具备发展脑机接口的独特优势,汇集了一批科研机构和临床基地,吸引了全球领先的企业与人才。面向未来,张江将继续秉承规划引领、创新驱动的发展理念,进一步优化脑机接口的产业发展环境,提升产业核心竞争力,为打造世界级脑机接口未来产业集群不懈努力。

专业分享——解码脑机接口核心技术
当大脑成为交互对象,如何安全解析神经意图?
中科院上海微系统所研究员、岩思类脑研究院首席科学家李孟博士在《脑机接口与脑电大模型》主题演讲分享了“直接读脑”的核心路径——脑电大模型。他通过对脑机接口中的神经编解码模块的讲解,揭示了脑电大模型在推动脑机接口(BCI)技术突破中的核心作用。李孟指出,泛化性差是脑机接口系统难落地的痛点,而脑电大模型通过预训练,学习大脑神经信号的本征表达和动态特性,具有解析生物大脑各种复杂功能的泛化能力。他认为,未来基于脑电大模型,脑机接口的商业化将落地控脑、脑控两大方向应用场景,脑机接口落地将由非侵入式逐步扩展到侵入式,脑电大模型将成为未来计算的底层基础。

上海傲意信息科技有限公司创始人倪华良则迂回创新,提出了通过肌电解析神经信号的重要性。在《肌电图AI解析技术赋能仿生假肢》主题演讲中,他阐明肌电技术的本质:“即使截肢者失去肢体,但残肢的肌肉如前臂的屈肌、伸肌、上臂的二头肌、三头肌仍可能保留电活动能力。大脑运动指令仍可传导至残肢末端。这些电信号可以通过皮肤表面的电极检测到,形成肌电图。我们通过生物传感器捕获这些外周神经信号,用AI重建运动意图,然后传输给机械手去执行。”他提出神经接口三形态分别为侵入式、非侵入式和肌电接口,未来肌电阵列+AI的临床价值将进一步拓展。

聚焦市场——共探脑机接口应用之路
当脑机接口走出实验室,我们将去向何方?
目前国内脑机接口技术在医疗领域应用最广。景昱医疗科技(苏州)股份有限公司董事长宁益华结合公司产品介绍了侵入式脑机接口在双靶点DBS药物成瘾治疗中的优势运用。在《脑机接口双靶点DBS药物成瘾治疗的颠覆性创新》主题演讲中,宁益华以阿片类药物成瘾为例进行讲解。他强调全球有近3亿阿片成瘾者,传统戒断手段(药物替代+心理治疗)复吸率高,针对此情况,景昱医疗提出脑机接口双靶点DBS研发。目前景昱医疗研发出的脑机接口双靶点脑深部电刺激产品,在治疗难治性强迫症、药物成瘾、酒精成瘾等适应症上已走在国际前沿,实现了突破性治疗效果。未来,景昱将推动“BCI+”医疗生态爆发,实现双重赋能。

脑机接口的核心难点在于“最大限度地利用大脑vs最低限度地损伤大脑!”中国科学院上海微系统与信息技术研究所研究员周志涛综合分析了当前的脑机接口应用前景。他在《脑机接口:让大脑连接未来》主题演讲中指出,大脑是最复杂、最重要、最脆弱的器官。这给目前的脑机接口应用带来了三个挑战。首先是神经信号微弱,该如何安全高效获得高质量信号;其次,研究要求深刻理解神经编解码机制;再次,脑机接口应用必须切实遵循道德与法律规范。同时他表示,外设接口只是初级阶段,国内脑机接口赛道将聚焦外延,打造“BCI+”生态,实现“脑机接口+AGI大模型”“脑机接口+眼动”“脑机接口+髓机接口”“侵入+非侵入”等交叉应用。未来一定是从物联网到“脑”联网,实现万物脑控。

群英荟萃——共话技术发展前景与挑战
围绕“脑机接口的机遇和挑战”这一话题,企业代表、投资机构代表以及行业专家开展圆桌互动。在第一财经主持周俊夫的主持下,BDG冬雷脑科医生集团创始人宋冬雷、数药智能科技科研负责人付航、上海小度律师事务所合伙人杜哲锋、加冕科技CEO&张通社创始人郑小辉展开了深入的讨论。

BDG冬雷脑科医生集团创始人宋冬雷从事神经外科工作几十年,他认为在医院端推动脑机接口技术真正服务患者,最大的痛点在于构建切实可行的临床转化路径。他强调,目前距离脑机接口应用的“最后一公里”还有距离,从外科医生的角度来看,脑机接口未来的研究方向肯定是无创和微创,才能最大程度降低受众的抵抗程度。未来脑机接口要加强产学研合作,建立行业标准,推动产业链上下游协同发展,共同开拓脑机接口产业的商业化市场。
数药智能科技科研负责人付航分享了数药智能的注意力强化训练软件诞生历程。产品以功能性电子游戏为基础,以软件为载体,通过特定的训练范式来让患者大脑产生稳定的生理变化。他分析了数药智能在数字疗法+脑机接口的应用,即通过基于前额脑电的神经反馈机制,形成脑电数据和行为表现的同步采集、评估和反馈,产生典型的数字疗法+脑电反馈闭环,从而获得更加个性化和精准的干预与治疗效果。
技术落地不仅关乎临床与产品,更需法律与伦理的同步护航。上海小度律师事务所合伙人杜哲锋针对脑机接口实际应用中可能产生的伦理问题进行了解答。他认为,判定一件事可为或不可为,最终需要法官来判断,最根本还是依据法律界定。针对脑机接口,相比讨论是否合规,政府的风险管控与审查更为重要。未来针对脑机接口,审查的要点需要进一步界定,例如数据使用方面需要保障用户对个人信息的掌控。
从实验室到产业生态,商业化路径同样关键。加冕科技CEO、张通社创始人郑小辉基于服务超1000家科技企业的观察,直指脑机接口商业闭环所缺失的三个核心要素。首先是缺乏清晰、可复制的落地路径和标准化体系,其次是政策红利的精准引导与落地承接能力还有待发展,再次是生态协同的深度不足。他认为,当前科研方、投资方、监管方等各环节的合作协同尚未形成,目前脑机接口技术要真正走出科研实验室,融入产业价值链,还需要进一步传播推广,使得供需双方形成良性合作。
各方一致认为,在推动技术发展的同时,必须高度重视伦理与法律规范的建设,确保技术应用符合人类价值观和社会利益。
张江论剑脑机接口专场活动的成功举办,为脑机接口产业的发展注入了强大动力。在政策支持、技术创新、产业融合以及社会关注的共同推动下,相信脑机接口这一前沿技术将为人类社会的发展带来更多惊喜!
28
2025-06
6 月 14 日,TCCI 连续第 5 年赞助的“neurochat 神聊”学术会议在苏州举办,今年已是第 6 届。neurochat 神聊是由一批全球神经、认知科学领域的华人青年科学家自发组织的科学会议,旨在帮助处于学术和职业生涯上升期的青年学者提供更多的交流、发展机会。本届会议线上线下共吸引 1600 多位参会者。
本次会议特邀美国实验心理学会高级会士、上海纽约大学神经科学教授吕忠林作《揭示视觉学习动态:建模与分析的新方法》主题报告。会议涵盖视觉学习动态机制、语义处理与解码技术、情绪调节的神经基础等热点议题,还重点关注了颅内记录技术在人类认知研究中的应用,以及睡眠状态下的认知过程解析,展现了从基础神经机制到临床应用的完整研究链条。
值得关注的是,嘉宾们深入了讨论人工智能与神经科学的交叉融合,探索元学习模型在理解大脑高级认知功能中的作用,以及概念创新的神经计算机制。这些研究是理解大脑通用智能算法的前沿理论框架。

20
2025-06
5 月 30 日 -31 日,天桥脑科学研究院(Tianqiao and Chrissy Chen Institute)与 AGI House 联合主办了 2025 参数记忆研讨会。本次活动汇聚了来自全球人工智能、神经科学与计算科学领域的顶尖专家,彰显了 TCCI 致力于利用 AI 驱动科学研究与发现的坚定承诺。两天会议期间,双方还共同举行了黑客马拉松。
杰出演讲嘉宾与思想领袖
本次研讨会邀请了多位重量级嘉宾,包括:
- Yiran Chen,杜克大学 John Cocke 杰出教授
- Prateek Chhikara,Mem0 创始 AI 工程师
- Jian Pei,杜克大学 Arthur S. Pearse 杰出教授
- Yixin Chen,圣路易斯华盛顿大学计算机科学与工程系教授
- Tatsunori Hashimoto,斯坦福大学计算机科学系助理教授
- Yu Su,俄亥俄州立大学助理教授
- Scott Knudstrup,Thousand Brains Project 研究员
- Charles Packer,Letta 首席执行官
- Kenneth Norman,普林斯顿大学计算与理论神经科学 Huo 教授
- Joon Sung Park,斯坦福大学计算机科学博士生
- Yan Liu,南加州大学教授
这些卓越的专家围绕参数记忆、AGI 架构,以及人工智能与人类认知的交汇等前沿话题,分享了开创性见解。他们的报告激发了关于 AI 驱动科学未来及其面临的伦理、技术与社会挑战的热烈讨论。
关键技术聚焦领域
- 检索增强生成(RAG):深入探讨 RAG 技术及其在提升 AI 记忆系统中的作用
- 参数记忆架构:讨论可针对特定任务调优的参数记忆系统的设计与实现
- 可扩展性与实时更新:聚焦 AI 记忆系统的扩展性挑战及其实时更新能力
赋能创新,造福人类
天桥脑科学研究院举办本次研讨会及黑客马拉松,体现了其在脑科学与技术交叉领域推动创新的使命。“人工智能不仅仅是一种工具,更是推动科学突破、造福全人类的催化剂。”创始人雒芊芊表示,“通过汇聚世界级专家并支持协作探索,我们希望加速 AI 成果向现实解决方案的转化。”
如需了解更多会议及嘉宾信息,请访问:
01
2025-06

5 月 12 日,天桥脑科学研究院和华山医院联合举办了”老年健康大数据的长期动态监测与管理”专家讨论会。本次会议汇聚了临床医学、基础医学、数据科学和人工智能等多领域顶尖专家,共同探讨大数据驱动的老年健康管理创新模式,为应对人口老龄化挑战提供科技支撑。
论坛开幕式上,天桥脑科学研究院(中国)副院长杨扬致欢迎辞,华山医院国家老年疾病临床医学研究中心丁玎教授主持研讨会议。整个研讨会分为”需求研讨”和”技术供给”两大环节,系统性地探讨了老年健康管理的临床需求与技术解决方案。
在需求研讨环节,浙江大学公共卫生学院袁长征教授分享了 Mind 饮食模式在中国人群中的本土化研究成果,指出高危人群依从性低、地理随访困难等挑战,并提出智能化营养监测与反馈系统的创新构想。华山医院全科医学科黄延焱教授介绍了社区认知障碍综合干预策略,强调以改善日常生活功能为核心的多维度非药物干预方案,并探索大语言模型在个性化认知康复中的应用前景。

▷黄延焱教授(右一),丁玎教授(右二)
英国伦敦大学学院的 Eric Brunner 教授和陈韫韬教授分别介绍了 Whitehall II 纵向研究及环境风险因素与痴呆症关系的最新发现。特别是陈教授团队基于 1 公里空间分辨率的研究表明,长期暴露于高水平 PM2.5 或二氧化碳环境与痴呆症风险显著相关,为环境因素在老年健康中的重要性提供了有力证据。中山大学廖婧教授则分享了数字技术在失智症基层防治中的实践经验与挑战,尤其指出数字鸿沟、技术整合等五大核心难题。
技术研讨环节中,北京安定医院杨志教授展示了基于微信小程序的游戏化认知评估和训练系统,通过自适应难度机制提升老年人认知训练效果。盛大 Theta Wellness 团队介绍了融合中西医理念的 AI 健康管家平台,实现了”预防-干预-康复”全周期管理。Dlab 团队展示了智能老人随访系统,通过智能语音交互和多通道管理有效解决老年群体数字鸿沟问题。
凝动医疗和杭州照护通健康科技分别介绍了基于计算机视觉的健康评估系统和物联网生命体征监测技术,为老年健康提供了非接触式监测解决方案。天桥脑科学研究院邵涵钰博士则分享了耳戴式设备在健康监测中的创新应用,展示了集成多模态传感器的前沿技术。

▷全体参会专家合影
圆桌讨论环节上,与会专家围绕”技术赋能老年健康大数据的动态监控和管理”展开热烈讨论,最终达成七大核心共识:
- 推动 AI 与数字化技术赋能长期队列研究;
- 发展基于手机游戏化的认知评估与干预策略;
- 探索 AI 赋能老年叙事医疗的创新路径;
- 加强环境暴露数据智能监控;
- 提升老年人可穿戴设备依从性;
- 明确健康管理智能体的可靠性边界;
- 优化智能健康数据管理机制。
丁玎教授在闭幕式上表示,本次研讨会不仅展示了老年健康管理领域的前沿成果,更为产学研各方搭建了深度交流的平台。未来将继续组织类似高水平研讨会,推动老年健康管理技术创新与临床实践深度融合,为应对人口老龄化挑战贡献智慧和力量。
此次研讨会的成功举办,标志着天桥脑健康研究院在老年健康大数据研究与应用领域迈出了重要一步,为构建智能化、精准化的老年健康服务体系提供了系统性解决方案和实践指导。随着 AI 技术与医疗健康领域的深度融合,老年健康管理将进入更加智能、精准、人性化的新时代。
17
2025-05

5 月 9 日 -11 日,“2025 浦江创新论坛”第七届神经科技国际创新论坛在上海举行,由中国神经科学学会神经调控基础与转化分会、天桥脑科学研究院(中国)和复旦大学计算神经科学与类脑智能学科创新引智基地联合主办,复旦大学神经调控与脑机接口中心、上海临港司南生命科技有限公司承办,闵行区科学技术委员会指导。
在当前全球科技革命与产业变革深度融合的关键时期,如何突破神经调控与脑机接口领域的技术瓶颈,推动基础研究向临床应用高效转化,构建产学研医协同创新生态,共同应对脑疾病这一全球性健康挑战,已成为摆在科技界和医疗界面前的重要课题。
本届论坛以“创新驱动·跨界融合·赋能未来”为主题,汇聚了 10 余个国家和地区的顶尖学者、临床专家及产业领袖,其中包括英国皇家学会会士、加拿大工程院院士、17 位国际知名外籍专家以及 70 余位国内科研及产业的知名专家学者和企业家演讲嘉宾,以及 450 余名参会人员。大家围绕人类共同挑战展开对话交流,共同探讨神经调控与脑机接口领域的最新科研突破、临床转化应用及未来产业发展趋势。

会议采用多论坛并行模式,聚焦“基础研究、技术创新、临床转化、产业应用”四大板块,设有神经科技未来产业主论坛、7 场专题平行 Workshop 及高端学术会议,全面覆盖神经调控与脑机接口领域的创新链条。
在神经科技未来产业论坛的圆桌环节,来自科技、转化、投资等领域的专家代表集中讨论了脑机接口技术的创新、应用挑战及未来方向,强调了科研与商业合作的重要性。各位产学研各界代表指出中国在科技创新方面取得显著进步,但成果转化面临激励机制缺失、专业经理人匮乏等问题。脑机接口技术在医疗、教育、消费领域的潜力不可限量,科技创新前景十分乐观,他们呼吁加强跨学科合作和政策支持,以克服转化难题。

“超声神经调控:机制与应用”研讨会重点探讨了超声技术在神经调控中的机制研究,包括超声波对小鼠皮层星形胶质细胞与神经元钙动态的差异化调控、微泡振荡对运动皮层的生物效应,以及基于声学超表面的精准经颅聚焦技术;同时聚焦临床应用,涵盖帕金森病干预、脊髓损伤康复及超声与光遗传学融合的靶向治疗新策略,探索人工智能算法在优化神经刺激参数中的潜力;创新性提出声遗传学技术与超声参数优化方案,凸显跨学科研究对技术转化的推动作用。
16
2025-05

智能交融,描绘人机共生新图景:BCI&AI脑机接口创新技术碧海论坛

2026年天桥脑科学研究院与《科学》杂志AI驱动科学大奖申报通道开放

齐奏时刻——Aditya Nair 用 AI 揭示神经活动中的隐秘合唱

近海水域的“碳真相”——Alizée Roobaert 利用机器学习绘制浅海碳吸收地图


天桥脑科学研究院与AAAS宣布2024年AI驱动科学大奖获奖名单

开辟无创脑机接口全新技术赛道,聚焦超声波脑机接口与神经调控学术研讨会在沪举办

脑机互联,智启未来:张江论剑勾勒“BCI+”应用新图景

第六届neurochat神聊举办:聚焦认知神经科学前沿突破

天桥脑科学研究院举办 2025 参数记忆研讨会

聚焦老年健康大数据,多学科专家探讨健康管理创新模式

神经科技未来产业论坛聚焦脑机接口,全球专家共话前沿技术

移动端眼动技术应用研讨会顺利举办,推动产学研协同创新

医疗数据共享大势所趋:医疗数据开放和安全使用专家研讨会报道

科技论剑:BCI技术发展前路何方?AI与基础研究如何相辅相成?

会议报道|“渐近渐远”:从人脑记忆到大模型记忆的未来之路

智能化、个性化、精准化:国际专家共议AI驱动的精神健康新范式


CHEN报|天桥脑科学研究院连续6年支持神经领域顶会

