天桥脑科学研究院

齐奏时刻——Aditya Nair 用 AI 揭示神经活动中的隐秘合唱

Dr. Aditya Nair
加州理工学院和斯坦福大学博士后研究员及 NIH NeuroAI 项目青年学者

当你体验饥饿、愤怒或恐惧等情绪时,大脑中的特定神经回路会被激活。但如果观察这些回路中的单个细胞,往往会发现这些细胞的活动与人的情绪体验之间几乎没有明显的相关性。

“这是一个巨大的悖论:我们从动物实验中知道这些回路控制情绪,因为如果我们让这些回路失活,动物就会停止表现出情感行为。”天桥脑科学研究院与《科学》杂志 AI 驱动科学大奖优胜奖得主 Aditya Nair 这样说道,“但当我们记录单个神经元的活动时,却找不到与目标行为的直接联系。”

为了解开这个谜团,Nair 将与情绪(如攻击性)相关的下丘脑区域的神经活动数据输入到一个能够检测神经元间微妙互动模式的机器学习模型中。“这就像在听一场交响乐:如果你只听某一件乐器,什么都听不出来,”他解释道,“你需要听整个乐队,才能理解旋律。”

Nair 使用的算法揭示了这样一种现象:当神经元群体交换并循环信号时,它们会稳定在一种被称为“线吸引子”(line attractor)的复杂关系中。这是一种常见于数字神经网络、但在活体大脑中极少被观察到的机制,它允许连续变量随时间被存储。“这很重要,因为情绪有两个关键特性:强度会变化,而且会持续一段时间。”Nair 说,“通过将 AI 模型拟合到神经活动上,我们在大脑中发现了一种此前无法检测到的信号,同时具备这两种特性。”

这是一个具有重要潜在意义的突破,尤其对药物研发有深远影响。“动物无法自我报告情绪,只能通过有限的几种行为表现情感,”Nair 解释道。“现在,我们可以利用大脑活动来量化受试者的饥饿、愤怒或恐惧程度——这将极大提升精神疾病治疗的开发和测试效率。”

Nair 的方法未来还可能帮助神经科学家从更广泛的大脑活动模式中检测到涌现信号。“目前我们只研究了下丘脑的一个很小的区域,”Nair 说,“但我们正在开发工具包,用于建模更大脑区的活动,并读取当成千上万神经元同时进行多项计算时涌现的隐藏信号。”

为加速这一过程,Nair 开发了一个能够接收大脑活动数据并快速处理以揭示涌现信号的大型语言模型。目标是:让标准化分析能够被快速实施,即使研究者本身对 AI 不甚精通也能轻松上手。“我们正在让 AI 工具对整个科研社区变得更加易用,以加速研究和药物开发的进程。”Nair 表示。